
From Bodily Sensors to the
Cloud and Back

Design Document · Group 26

Client – Goce Trajcevski
Advisors – Goce Trajcevski, Liang Dong, Sung Min Kang

Isaac Zahau – Front End/UI – isanga@iastate.edu
Justin Worely – Cloud Engineer – jmworely@iastate.edu
John Kivley – Electrical Engineer – jekivley@iastate.edu
Richa Patel – Database Engineer – rppatel@iastate.edu

Michael Lauderback – Embedded Systems Engineer – mlauderb@iastate.edu

Team Website
https://sddec20-26.sd.ece.iastate.edu

https://sddec20-26.sd.ece.iastate.edu


Executive Summary

Development Standards and Practices

• IEEE standards

• Waterfall Software Development

• Circuit, Block, and Use Case diagrams

Summary of Requirements

• At least 2 sensors

• Data stored on the cloud

• Transmit and receive data securely

• User-friendly user interface

Applicable Courses from Iowa State University Cur-
riculum

• EE 201 – Electric Circuits

• EE 230 – Electron Circuits and Systems

• EE 285 – Problem Solving Methods and Tools for Electrical Engineering

• EE 321 – Communication Systems I

• CPRE 281 – Digital Logic

• CPRE 288 – Embedded Systems I: Introduction

• CPRE 388 – Embedded Systems II: Mobile Platforms

• COM S 227 – Object-oriented Programming

• COM S 228 – Introduction to Data Structures

• COM S 319 – Construction of User Interfaces

• COM S 309 – Software Development Practices

• SE 329 – Software Project Management

• SE 339 – Software Architecture and Design



• COM S 362 – Object-Oriented Analysis and Design

• COM S 363 - Introduction to Database Management Systems

• COM S 474 – Introduction to Machine Learning

New Skills or Acquired Knowledge

• Gained knowledge of industry tools used for hardware design such as KiCad.

• Gained knowledge and skill in designing electrical hardware starting from an
idea to the final product.

• Gained knowledge and honed skills in troubleshooting and debugging hardware
designs and learning multiple methods to conduct troubleshooting.

• Gained knowledge in project documentation practices.

• Gained knowledge in Amazon DynamoDB

• Gained knowledge on AWS infrastructure.

• Gained knowledge on features of Spark and Cassandra

• Gained knowledge on different types of databases.

• Gained knowledge in MVC



Contents

List of Figures 5

List of Tables 5

1 Introduction 7
1.1 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Project and Problem Statement . . . . . . . . . . . . . . . . . . . . . 7
1.3 Operational Environment . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Engineering Constraints . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Functional Requirements . . . . . . . . . . . . . . . . . . . . . 8

1.5 Intended Users and Uses . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Expected End Product and Deliverables . . . . . . . . . . . . . . . . 9

2 Specifications and Analysis 10
2.1 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Design Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Conceptual Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Statement of Work 16
3.1 Previous Work and Literature . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Technology Considerations . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Hardware/Embedded . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Connection board options . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Connection Board Options . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Pulse Sensor options . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.5 Battery Options . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.6 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.7 Cloud Services . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.8 Data Analysis/Databases . . . . . . . . . . . . . . . . . . . . . 21

3.3 Task Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Possible Risks and Risk Management . . . . . . . . . . . . . . . . . . 24
3.5 Project Proposed Milestones and Evaluation Criteria . . . . . . . . . 25
3.6 Project Tracking Procedures . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Expected Results and Validation . . . . . . . . . . . . . . . . . . . . 25

4 Project Timeline, Estimated Resources, and Challenges 25
4.1 Project Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Feasibility Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4



4.3 Personnel Effort Requirements . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Financial Requirements and Other Resource Requirement . . . . . . . 26

5 Testing and Implementation 28
5.1 Interface Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Hardware and software . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Functional Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Non-Functional Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.6 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.7 Mobile and Web Applications . . . . . . . . . . . . . . . . . . . . . . 33
5.8 Integration Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion 35

References 36

Appendix A 38

Appendix B 39

Appendix C 43

Appendix D 44

List of Figures

1 System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 IoT Sensor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 MCU Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 MCU Connectivity and Scalability . . . . . . . . . . . . . . . . . . . 14
5 Encoding Standard Overview . . . . . . . . . . . . . . . . . . . . . . 14
6 MCU-Phone Communication Flowchart . . . . . . . . . . . . . . . . . 16
7 First Semester Gantt Chart . . . . . . . . . . . . . . . . . . . . . . . 28
8 Second Semester Gantt Chart . . . . . . . . . . . . . . . . . . . . . . 28
9 Heart Rate Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
10 Mobility Sensor Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 32

List of Tables

1 Type Code Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Return Type Code Use Cases . . . . . . . . . . . . . . . . . . . . . . 15
3 Task Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5



4 Risk Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Personnel Effort Requirements . . . . . . . . . . . . . . . . . . . . . . 26
6 Expected Expenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7 Final Expenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8 Current Measurements for Pulse Sensor . . . . . . . . . . . . . . . . . 31
9 Current Measurements for Mobility Sensor . . . . . . . . . . . . . . . 33
10 Functional Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
11 Non-Functional Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6



1 Introduction

1.1 Acknowledgement

We would like to acknowledge Goce Trajcevski, Liang Dong, and Sung Min Kang.
Goce Trajcevski is our advisor. He has been very helpful, guiding the project in a
successful direction. Sung Min Kang and Liang Dong have been there to offer great
advice in regards to sensors for our project. We would also like to acknowledge Sarah
Radke, Jessica Terrell, and John Stankovic for they were the sources of our market
survey.

1.2 Project and Problem Statement

General Problem:
Doctors cannot monitor all of their patients at once. At a medical center or hospital,
a doctor must allocate their time accordingly to the needs of their patients. Some
patients require more attention than others due to the severity of their condition. In
addition, some patients wish to not remain in a medical center or hospital; however,
their condition requires a higher level of monitoring from a medical professional.

General Solution:
To solve these and other possible needs, we are using remote data storage using a
cloud platform and sensors placed in different locations on the human body. We will
incorporate different sensors placed in key locations that all talk to a master control
unit (MCU). This MCU will then process the data from all of the sensors. If the mobile
application is open, it will transmit live statistics to the mobile application. Along
with the mobile application the MCU will also send the data that was collected to
the cloud platform. Once there, that data will be stored and analyzed to provide the
user with multiple ways to view their statistics, as well as their medical professional.
This way, it is easier for doctors to monitor multiple patients, as well as give the
patient the freedom to leave the hospital or medical center since the doctors can now
monitor the patient remotely.

1.3 Operational Environment

The end product is expected to be operational under various environments whether
inside a hospital or home, or outside in sunshine, snow or rain. In addition, it is also
expected to operate properly, even when exposed to sweat, repeated motion, mild
detergents, and various clothing material.

7



1.4 Requirements

1.4.1 Engineering Constraints

• Use at least two on-body sensors that will measure particular vitals of the human
body to create an IoT system from monitoring bodily functions.

• Sensors must have low power consumption, be wearable, and have a dedicated
power supply to ensure the device is portable. Furthermore, it needs to be
reliable to ensure the product can be used on a consistent basis collecting in-
formation accurately.

• The sensors must be able to transmit data to an MCU using digital signals
where MCU relays the data to the user’s phone. The MCU relays digital signals
directly and it converts received analog signals to digital signals using an ADC
before relaying the data.

• The mobile application must be able to pull data from the database.

1.4.2 Functional Requirements

• All electric hardware must be protected from outside elements when being worn
on the body. The hardware cannot be affected by the rain, snow or sweat.

• The UI must be easy to navigate while providing details from every sensor. The
visual data should be easy to view and manipulate.

• All transmissions to and from the cloud need to be encrypted.

• The database must be cloud-based to store and access data in real time.

1.5 Intended Users and Uses

Our team conversed with multiple medical professionals and researched the work
of John Stankovic, a professor at the University of Virginia whose research focuses
on sensor-based health care. The end product will be wearable and easy to use.
Furthermore, it will provide information regarding heart rate, temperature, and body
weight all in real time.

1.6 Assumptions and Limitations

Below is an itemized list of assumptions driving the project.

• The maximum number of users will greatly vary over any given time.

• The product is currently limited to the United States of America.

8



• The users will agree to an information disclosure allowing bodily readings to be
stored in a remote location.

• There will be a monthly subscription charge to access and store bodily data.

• The main body sensors will monitor temperature, heart rate, and weight.

• The end product will consist of multiple wearable items, each embedded with
sensors for monitoring vital functions.

• Design and build our own MCU board to receive and relay the data from the
sensors.

• The MCU will relay sensor data to the user’s phone which will relay the data
to the cloud.

Below is an itemized list of limitations driving the project.

• The cost of the final physical product should not exceed $100.

• Due to funding and limited time, less than ten products will be available for
testing.

• Majority of testing will be with simulated users and devices.

• Due to the limited amount of users, scalability will not be able to be tested as
effectively.

• The system must have a power supply consisting of batteries that will power
the device for at least the majority of the day.

• The system must operate on 5.5VDC or less.

• Due to the nature of the data being collected, all data transferred must be
encrypted.

1.7 Expected End Product and Deliverables

The final product is a system that integrates a wearable device that includes multiple
on-body sensors, communication protocols, data management, and mobile app. The
sensors will measure the mobility, heart rate, and more of the user. This product will
be portable enough for the users to take away from home and to use during everyday
events. The product is also able to connect to a mobile phone to display live data
when WiFi is not available. The device will use the bluetooth functionality to connect
to the mobile phone and display the live data in a clean user interface. If WiFi is
available, the mobile application will be able to pull in processed data from the cloud
and display the data onto the application.

9



2 Specifications and Analysis

2.1 Proposed Approach

Our system will utilize sensor(s) to track different vitals. Based on the readings from
one or more sensors, more data will be collected or a notification will be sent to the
user, medical provider, or both. To accomplish this we will have one or more sensors
collecting data and send that data to a local MCU. The local MCU will then compile
that data and send the data to a user’s mobile device. A user will utilize our mobile
application to visualize and transmit the data received from the MCU to the cloud
database.

When data is received by the database it will also be sent to a cloud server where
data analytics will determine if there are any abnormalities in the sensor readings. If
any abnormalities are found, the server will request more data from the MCU through
the mobile application. The MCU will increase sampling rate from active sensors,
request data from inactive sensors, or both. Once more data is available for analysis
the server will notify the user or medical provider about the possibility of a medical
concern if necessary. If the server did not identify a medical concern it will notify the
MCU through the mobile application to resume prior sensor monitoring.

2.2 Design Analysis

We discussed and researched databases, sensors, and package designs. We decided to
focus on getting one sensor, a pulse sensor, fully integrated into the system. The pulse
sensor is very easy to set up since it only has three connections. We also discussed
using an ESP board for bluetooth and WiFi connectivity, but ultimately decided to
use the STM32WB55, an ARM chip with integrated wireless support. The primary
reason for this was because the ESP module is quite large and would be cumbersome
in our sensor application. The STM chip also has development kits called nucleo
boards which are well supported. The STM chip would also be easier to integrate
into a custom PCB since it is one component, not two. We decided that due to
time constraints, it was unfeasible to design and order a custom PCB. Mentions of
a custom MCU design in the remainder of this document are academic, reflecting an
overall plan without execution.

We have decided to use AWS DynamoDB as our database as it enables easier
specifications for triggers and lands itself naturally to AWS cloud services which, in
turn, enables our project to execute in distributed settings. We have also set up a test
application to verify the connection between the database and the mobile application.

2.3 Development Process

We are using the Agile development process because the system consisted of het-
erogeneous components and it was beneficial to enable various integration/interface

10



testing along the partial implementations throughout the project development.

2.4 Conceptual Sketch

Figure 1: System Diagram

Figure 1 represents our entire system for the first three users. Users can have as many
sensors as they choose, and the system is capable of adding more users.

11



Figure 2: IoT Sensor Network

Figure 2 represents a sensor IoT network for a single user. Each user will have their
own MCU (left side of the figure) which is equipped with an STM32WB chip to
communicate with the sensors via bluetooth low energy. More information on the
STM32WB chip can be found in section 3.2. The MCU will be collecting data from
the sensor to relay it to the user’s mobile phone and the cloud. This user has three
sensors: one to measure their body temperature, one to measure their pulse, and one
to measure their weight. Each sensor has its own battery power supply as well as an
STM32WB.

12



Figure 3: MCU Architecture

Figure 3 shows an outline of a single MCU. Each unit is equipped with its own battery
supply. In addition, it will have its own battery level monitor to determine the state
of charge in the batteries, allowing the user to keep track of how much charge remains,
and determine if the system needs to be recharged by plugging in external power to
the micro usb connector. The display shows MCU-specific information to the end user
like battery level, paired sensors, and network status. The programming connector is
used to load code to the MCU and debug.

13



Figure 4: MCU Connectivity and Scalability

Figure 4 shows a class diagram of the MCU, illustrating how it keeps sensors scale-
able and how it handles network requests for WiFi and bluetooth. The sensors shown
are pulse and weight sensors.

To transfer data between sensors, the MCU, and the user’s phone, we designed
an encoding standard (data frame) which can be easily built and decoded. This data
frame assumes the following pattern:

Type Code Data Type Code Return Type Code Data End
1 byte 1 byte 1 byte n bytes 1 byte

Figure 5: Encoding Standard Overview

The type code tells us where the information comes from. The data type code
tells us what the data type of “Data" is. The return type code tells us what the
purpose of the data is. The data section is a single unit of the data type specified.
This constrains n to the number of bytes of the specified data type. Finally, the end
byte is set to 0. Below is a tabulation of type code values and their uses cases.

14



Type Code Use Case

0x01 ACK. signal from MCU → Server
0x10 Message from Server → MCU
0x02 MCU → Server about respirations
0x03 MCU → Server about heartbeats
0x04 MCU → Server about weight

Table 1: Type Code Use Cases

The data type section is one unified byte containing a code telling us in what data
type the data is formatted. A value of 1 means the data is an integer, a value of 2
means the data is a double, and a value of 3 means the data is a string. The return
type tells the receiving end what the purpose of the data is. Below is a tabulation of
return type codes and their uses.

Return Type Code Signal Type Use Case
0x00 SENT Used for sending sensor data to server
0x01 ACK Used to acknowledge sensor data received
0x02 MOD2 Modify respiration collection frequency
0x03 MOD3 Modify heartbeat collection frequency
0x04 MOD4 Modify weight collection frequency
0x11 ACK Acknowledge and ACK signal
0x21 ACK Acknowledge MOD2 signal
0x31 ACK Acknowledge MOD3 signal
0x41 ACK Acknowledge MOD4 signal

Table 2: Return Type Code Use Cases

Figure 6 illustrates a communication protocol that the MCU uses to interface with
the cloud and the user’s phone. All sent and received communications are to use the
encoding standard mentioned in the previous paragraph. The purpose of designing
the communication this way is to ensure that the MCU, cloud, and user’s phone are
all synchronized such that each entity knows what is being collected and how.

15



Figure 6: MCU-Phone Communication Flowchart

3 Statement of Work

3.1 Previous Work and Literature

John Stankovic is a professor in Computer Science at the University of Virginia. His
research consists of a smart home system for patients with various health problems
such as dementia, depression, obesity, and epilepsy. Different sensors such as a trip
sensor, pressure sensor, floor sensor and many other sensors are placed in a living
space. These sensors will detect any irregular activity and will notify the patient’s
medical provider if needed[1].

Our product will be similar to Professor Stankovic’s research with the exception
of creating a smart home device. This product places its focus heavily on the on-body
sensors and uses different sensors to detect any irregular patterns with the patient.

16



Measurements from the sensors will be sent to the cloud, the cloud will process the
data, and send a message back to our device if any other measurement is needed. Our
web application will be used by the medical provider to keep track of the patient’s
health.

3.2 Technology Considerations

Technology considerations are split up into seven groups: hardware/embedded, con-
nection board options, pulse sensor options, battery options, user interface, and cloud
services data analysis/databases.

3.2.1 Hardware/Embedded

To keep sensors small and provide the end user with a central hub for all sensors, we
will need some kind of MCU. After consulting with ETG about options for the MCU,
we narrowed our focus to 3: the Teensy board, Raspberry Pi Zero W, and a custom
design [2].

The Teensy board is a small arduino board with limited GPIO. It has two analog-
digital converters which can be useful for displaying waveforms, and because it is an
arduino, it is comparably easy to program and test. The teensy board is also very
cheap. The two largest drawbacks that make the teensy board an unviable option
are that it does not have built in bluetooth or WiFi. To implement both bluetooth
and WiFi, we would need a riser connecting the GPIO holes which makes the finished
unit too bulky.

The Raspberry Pi Zero W is a very small form factor raspberry pi with built in
WiFi. Like the teensy board, it is quite cheap and easy to test [2]. The Pi Zero
W also has a small, prebuilt battery pack, keeping to our form factor restrictions
and eliminating the need to design battery technology. Unlike the teensy board,
it does not have analog-digital converters, so clients will not be able to view raw
waveforms and would have to rely on other tools to do so. The Pi Zero W does not
have bluetooth, so, like the teensy board, we will have to use a riser to implement
it. Perhaps the biggest drawback to the Pi Zero W is that it is overkill. To run any
program, some version of linux needs to be installed. For our application, we do not
need the HDMI port, nor the USB C ports. All we need are C libraries to run the
MCU code, so using something like Linux From Scratch would be optimal.

The final option is a custom design. The greatest benefit of using a custom design
is that we can implement everything exactly as needed, resulting in no extra hardware
and no risers compromising form factor. Designing a custom system from scratch has
its drawbacks as well. The system will be more difficult and expensive to test, and
will be more time consuming to develop [3].

Given the three aforementioned options, we have chosen to build a custom design.
The Teensy board is too bare-bones, requiring risers to include all of the functionality
we need which hurts form factor. The Pi Zero W, while small and in some ways

17



convenient, was out of phase with what we are really looking for: not containing
some hardware we need while simultaneously containing some hardware we don’t.
The best option that gives us the form factor we are looking for and the functionality
is a custom design. Although we were not able to fabricate a custom design for
the final presentation, we developed the project with intent of doing so, using the
necessary development kits as a proxy.

3.2.2 Connection board options

The sensors will need a way to send the data they collect. In determining the con-
nection options for the sensors, we spoke with ETG for advice on specific technology
that will allow the sensors to relay data to and from our MCU. ETG pointed us in
the direction of the ESP 8266 which is used in the roombas for the course CPRE 288
which all team members have taken. Taking a further look, the ESP 8266 enables
the sensors to communicate via WiFi and WiFi only. It is also inexpensive, small in
size, and has very low power consumption [4]. We found plenty of development kits
available on the ESP website which allow us to easily test it’s functionality.

When further exploring other ESP products we came across the ESP 32. The ESP
32 allows the sensors and MCU to communicate via WiFi and bluetooth [5]. This
alone would allow the MCU to utilize bluetooth to communicate with the sensors and
relay the data to the cloud via WiFi, unlike the ESP 8266. Furthermore, the ESP
32 is only slightly larger and more expensive than the 8266, however, it has stronger
processing power, built-in SRAM and flash memory, and has development kits to
allow us to test it’s functionality on a breadboard [5]. In the end, we felt the ESP 32
was the best option because of it’s dual capability of communicating via bluetooth
and WiFi as well as its relatively cheap price, built-in memory, and the development
kits available to help us test.

3.2.3 Connection Board Options

The sensors needed a way to send the data they collect. In determining the connection
options for the sensors, we spoke with ETG for advice on specific technology that will
allow the sensors to relay data to and from our MCU. ETG pointed us in the direction
of the ESP 8266 which is used in the roombas for the course CPRE 288 which all
team members have taken. Taking a further look, the ESP 8266 enables the sensors
to communicate via WiFi and WiFi only. It is also inexpensive, small in size, and
has very low power consumption[4]. We found plenty of development kits available
on the ESP website which allow us to easily test it’s functionality.

When further exploring other ESP products we came across the ESP 32. The ESP
32 allows the sensors and MCU to communicate via WiFi and bluetooth [5]. This
alone would allow the MCU to utilize bluetooth to communicate with the sensors and
relay the data to the cloud via WiFi, unlike the ESP 8266. Furthermore, the ESP

18



32 is only slightly larger and more expensive than the 8266, however, it has stronger
processing power, built-in SRAM and flash memory, and has development kits to
allow us to test it’s functionality on a breadboard [5]. Finally, we looked one step
further and found STM’s WB lineup of ARM microcontrollers. The WB55 variant
had a very attractive package at only 7x7 mm, and integrated Bluetooth and WiFi.
Being STM, there is a lot of support for it, and a development kit [6]. In the end, we
felt the STM32WB was the best option because of its small package which integrates
all the wireless technologies we need.

3.2.4 Pulse Sensor options

The first collection of sensors that we explored consisted of pulse sensors. Specifi-
cally we looked at two sensors, the MAXREFDES117 and the Pulse Sensor Amped.
We chose these sensors because when we approached ETG for guidance, they rec-
ommended the Pulse Sensor Amped. After exploring many more sensors we found
the MAXREFDES117 to be most appealing due to the fact that it’s wearable, small
in size, cheap, has low power requirements, and is provided with free algorithms for
functionality with arduino microcontrollers. The downsides were that it may require
5.5 VDC for improved accuracy, and it is only compatible with arduino and mbed
platforms [7].

When researching more into the pulse sensor amped, we found it to have many
similar pros to the MAXREFDES sensor. It is small, wearable, and requires very
little power. Furthermore, it comes with processing visualization software to help us
test the sensor, it is compatible with many embedded platforms including arduino,
and only needs a power, common, and data connection in the hardware design [8]. In
the end, we determined the Pulse Sensor Amped to be the most viable option due its
similar pros to the MAXREFDES in addition to its simplicity in design, its capability
with many platforms, and we can easily consult with ETG for any questions we have
since they have experience working with the sensor as well.

For the design we have researched many types of sensors like pulse, weight, and
mobility; however, to save time we chose to specifically focus on getting one sensor,
the pulse sensor, functioning properly so that when we implement other sensors, the
process will be much smoother and quicker.

3.2.5 Battery Options

Each individual sensor and master control unit needs to have its own battery power
supply. We decided that it would be best to have replaceable coin cell batteries power
the sensors and MCU so that when either runs out of charge, there is minimal time of
data loss since the user can replace the used batteries with new ones. In addition, we
aim to keep the sensor circuit as simple as possible and having a rechargeable battery
would require adding a charging port and battery level monitor.

19



In the end, we decided to use the CR 2032 coin cells to power the hardware. These
coin cell batteries are very popular as you can easily buy them in an electronics store
or order them from various online stores. The development kits for the STM32WB55
have a specific coin cell battery slot fit for the CR 2032s. In addition, they are
relatively small with a 20mm diameter and height of 3.2mm, provide enough voltage
for our circuits(3V) and have a large current capacity of 235 mAh [9].

3.2.6 User Interface

Users will need to read measurements from the sensors and review processed data from
the cloud. Our solution involves creating a mobile application and a web application
for patients and medical providers. For the web application, we have done some
research on frameworks and libraries including React and Vue. React has many
advantages over Vue such as having a large support community, having good server
performance due to its Server Side Rendering technique, and the non-requirement for
extra packages to function [10][11]. For these reasons, we ultimately decided to go
with React.

For our mobile application, we have two options: Android [12] or IOS [13]. Ide-
ally, it would be great to have support for the two operating systems but due to
time constraint, we decided to go with Android only. Both systems have extensive
documentation on creating applications, but our team has much more experience
with creating Android applications. Android also has a much larger development
community which makes debugging easier.

3.2.7 Cloud Services

Organizations can buy and maintain servers in a physical location. However, in
the current era it is much more common to use a cloud provider to outsource these
resources. This not only alleviates the burden of having to do normal maintenance,
but also provides the benefits of having updated technology at no extra cost. To this
end, we will use cloud services to host a remote server.

After doing research into both Microsoft’s Azure [14] and Amazon’s AWS(Amazon
Web Services) [15] we selected AWS. The reasons behind this choice were motivated
by three main areas: Scalability, Cost, and Services. Our research showed that AWS
offers much wider scalability when compared to Azure. While Azure might work
better for smaller projects, AWS has a much greater ability to scale up with the
project. For cost, we found that while Azure does offer relatively low costs, AWS’s
costs were even lower. AWS even offers a limited free tier that fits our teams needs
for this project. When looking at services, we found that Azure is starting to invest
more into different and unique services. However, AWS has a wider variety of services
with easy intercommunication.

20



3.2.8 Data Analysis/Databases

While researching databases [16], we decided that Amazon DynamoDB would be the
best NoSQL database. This is because it gives the ability to store high quantities of
data in a flexible way, and NoSQL databases tend to be faster than SQL databases.

We decided on Amazon DynamoDB because it is an excellent NoSQL database,
and is serverless. DynamoDB is designed to be highly scalable with relatively low ac-
cess times. It also eases backups which are completed without performance reduction.
The negative side to DynamoDB is that it can only be deployed within AWS, there is
an additional storage cost for each item, and it is unable to do complex queries. We
did some research on Cassandra but chose not to use it because the access times are
slower, and querying does not have joins or subquery support. We also did research
on MongoDB and chose not to use it due to its difficulty to secure properly, and it
does not have relational database capabilities.

For the data analysis, we decided to use DynamoDB Streams. We believe this is a
good option because DynamoDB Streams has the ability to set up triggers when new
data is added, existing data is changed or deleted. We can then use this trigger to
analyze each data using our data processing code which will be deployed using AWS
Lambda.

3.3 Task Decomposition

The following table is a work breakdown summary, assigning task numbers and de-
pendencies to tasks.

Task
No.

Task Name Contributors Description Dependencies

1 Hardware John, Michael Every hardware-
based aspect of
the project

1.1 Sensor IoT Net-
work

John Scaleable blue-
tooth network
of sensors

1.1.1 Design Network John Create a block
diagram for net-
work architec-
ture

1.1.2 Order parts for
network

John Order sensors
and testing dev
kit

1.1.1

21



1.1.3 Assemble net-
work

John Assemble self-
contained sen-
sors

1.1.2

1.1.4 Test IoT net-
work

John Develop testing
code to use as a
template on the
MCU

1.1.3

1.2 Custom MCU Michael Custom circuit
that connects
sensors to the
cloud

1.2.1 Design MCU
architecture

Michael Create a com-
ponent diagram
and schematic
for the MCU

1.2.2 Order compo-
nents for MCU

Michael Order compo-
nents for the
MCU including
custom PCB

1.2.1

1.2.3 Assemble MCU
components

Michael, John Solder compo-
nents to PCB

1.2.2

1.3 Integrate sensor
network with
custom MCU

Michael, John Write code for
MCU connect-
ing sensor net-
work

1.3.1 Assemble sen-
sors with MCU

Michael Write MCU
code

1.1, 1.2

1.3.2 Test sensor net-
work with MCU

Michael Refine Code 1.3.1

1.3.3 Calibrate sen-
sors

Michael, John Calibrate sen-
sors so they
generate ac-
curate measure-
ments

1.3.2

2 Database/Cloud Richa, Justin Cloud based
aspects of the
project

22



2.1 AWS Justin Amazon Web
Services

2.1.1 Set up AWS
server

Justin Set up an AWS
server

2.1.2 Set up AWS
DynamoDB

Richa Set up AWS
DynamoDB
database

2.2 Data Analytics Richa Develop AI code
to interpret
data

2.1

3 User Interface Isaac, Richa,
Michael, Justin

All UI aspects
of the project

3.1 Mobile Applica-
tion

Isaac Every mobile-
based aspect of
the project

3.1.1 Integrate mobile
application with
database

Isaac, Richa Connect mobile
app to the AWS
database

2.1.2

3.1.2 Integrate MCU
with mobile ap-
plication

Michael, Isaac Connect mo-
bile app to the
MCU

1

3.2 Web Applica-
tion

Justin, Isaac Every web-
based aspect
of the project

2.1.2

3.2.1 Integrate web
application with
database

Isaac, Justin,
Richa

Connect web
app to the AWS
database

2.1.2

3.3 Test Integration Isaac, Justin Test data flow
from MCU to
database

3.1, 3.2

4 Testing Team Test system as
a whole, look-
ing for issues
in functionality
and design

1,2,3

Table 3: Task Decomposition

23



Table 3 shows how the tasks for our project will be decomposed. Each task is assigned
to a team member(s) who will be working on it. The dependencies of each task are
listed in the far right column.

3.4 Possible Risks and Risk Management

Risk Severity Mitigation Strategy

High Expenses High Use of existing alert system(s) within
AWS for notification when a service is
reaching a repset usage threshold.

Lack of experi-
ence/knowledge

High When faced with area’s within the
project where we were lacking experi-
ence, we consulted with experts in that
area and would do extensive research
into that area.

Injury from misuse Medium To minimize the injury from misuse, we
took extra steps within the design to ad-
dress possible causes of injury.

Malfunctioning system
from normal usage over
time

Low We designed the system to be able to
handle different environments and in-
cluded tests for reliability into our de-
sign.

Data security High With AWS DynamoDB we were able to
utilize the secure connection provided
through AWS’s user and secrets keys.

Table 4: Risk Mitigation

Table 4 shows the risks that are involved with creating and using our product.
Each risk has its own severity and our strategy for dealing with each risk is listed
under Mitigation Strategy.

24



3.5 Project Proposed Milestones and Evaluation Cri-
teria

The main activities and milestones throughout the evolution of this project are illus-
trated in Figure 7 (Spring 2020 semester) and Figure 8 (Fall 2020 semester).

3.6 Project Tracking Procedures

We used Trello as a method for tracking progression on each task that needed to
be accomplished in order to create the final product. This method of SCRUM also
documented the progression with time. We also used GitLab to keep track of changes
in our code. To easily track changes to master, we used a git webhook in the team
discord server to send real-time notifications.

3.7 Expected Results and Validation

Our desired outcome is to have a product that is accurate and secure. The final
product needs to be able to gain users’ trust the moment it is being presented.

Although we focused on pulse sensors, our testing ensures that we can straightfor-
wardly incorporate other sensors, such as temperature, movement, and body weight.
Our main validation consisted of comparing the values detected and displayed by our
system with the “brute-force” use of external sensor readings.

4 Project Timeline, Estimated Resources, and
Challenges

4.1 Project Timeline

For our timeline we have split the team into software and hardware. Software is split
into three sub-groups: user interface, server, and data.

4.2 Feasibility Assessment

Designing a microcontroller requires a lot of troubleshooting and debugging which
can lead to unforeseen delays. Our approach to work around this is to test all sensor
functionality with a prebuilt MCU (a STM32WB55 nucleoboard) to ensure the IoT
sensor network is functioning properly when we have to test our custom MCU.

4.3 Personnel Effort Requirements

25



Task Estimated Time per Week

Cloud application 1 hours

Hardware application 9 hours

Database application 3 hours

Web application 5 hours

Mobile application 6 hours

Testing 25 hours
Table 5: Personnel Effort Requirements

4.4 Financial Requirements and Other Resource Re-
quirement

For this project, we are assuming a budget of $500. Table 6 shows project costs at
the end of the Spring 2020 semester as part of our Design Document.

Project
Task/Tools

Quantity Unit Cost
($)

Total Est.
Cost ($)

% of Bud-
get

ESP32 dev kits 4 10.99 43.96 8.792

Pulse Sensor 1 24.95 24.95 4.99

Weight Sensor 1 9.00 9.00 1.8

Tag Connect Ca-
ble

1 39.99 39.99 7.998

STM32 Micro-
controller

2 3.49 6.98 1.396

Custom PCB 2 10 20 4

Micro-B USB
connector

2 0.87 1.74 0.348

100 nF caps 10 0.163 1.63 0.326

10 nF caps 10 0.05 0.50 0.1

4.7 uF caps 10 0.206 2.06 0.412

AWS subscrip-
tion1

9 months 0-30/month 0-270 0-54

26



Total 190.88 -
460.88

38.176 -
92.176

Table 6: Expected Expenses

We planned to spend at most 92.176% of the budget which leaves us $39.12 to continue
adding sensors or eat up unforeseen costs. Because we are not valuing our labor, the
surplus in budget would likely go to fund extra hardware in the event that original
hardware is broken or becomes unusable.

However, during the implementation phases throughout the Fall 2020 semester,
we had adjustments in the estimated costs, as shown in Table X:

Project
Task/Tools

Quantity Unit Cost
($)

Total Est.
Cost ($)

% of Bud-
get

ESP32 dev kits 4 10.99 43.96 8.792

STM32WB Nu-
cleoboards

2 43.75 87.50 17.5

Pulse Sensor 1 24.95 24.95 4.99

Mobility Sensor2 1 0 0 0

AWS subscrip-
tion3

9 months 0-30/month 0-270 0-54

Total 156.41 -
426.41

31.3 - 85.3

Table 7: Final Expenses

1AWS subscription ranges from $0-$30 per month because of the free trial tier. For the scope of
this project, we are trying to keep in the free tier. The $30 per month is representative of a small
scale deployment with multiple users.

3Mobility Sensor was provided free of charge by Iowa State University as part of a collaboration
between our group and a graduate research group.

3Total AWS feed summed to $30-$35 consuming 6%-7% of the budget (the final month is still in
progress).

27



Figure 7: First Semester Gantt Chart

Figure 8: Second Semester Gantt Chart

5 Testing and Implementation

5.1 Interface Specifications

• Functionality between sensors and MCU (John)

• Functionality between MCU and mobile application (Michael & Isaac)

• Connectivity between mobile and database (Isaac & Richa)

28



• Connectivity between MCU and database (Michael & Richa)

• Functionality between database and cloud (Richa & Justin)

• Functionality between cloud and web application (Justin & Isaac)

5.2 Hardware and software

The following is an itemized list of software tools used in the project.

• Mocha
Mocha is a library that is used to test JavaScript code. This library can be used
to test the functionalities of React. Although Mocha was our chosen library for
testing the web app, we did no get far enough with our web app to write
automated tests.

• JUnit
JUnit is used to test Java applications. This unit testing tool will be used to
test the functionalities of the mobile application.

• KiCad
KiCad is a CAD tool for printed circuit boards (PCBs). This tool will be used
to design the IoT circuits as well as the MCU PCB.

• STM32CubeMX/Arduino IDE
The STM32CubeMX and Arduino IDEs are embedded development environ-
ments for programming the nucleoboards.

5.3 Functional Testing

• Test sensitivity of the sensors using an oscilloscope. Make sure the sensitivity
is not too high where it inhibits data collection and analysis. Adjust filtering
or sampling frequency to clean up noisy signals. (John & Michael)

• Test ohmmeter circuit with resistive sensors to make sure the data collection is
consistent and contains minimal noise. (John)

• Test the current consumption when sensors are operating to determine battery
life of the CR 2032 cells. (John)

• Test bluetooth low energy mesh connections between sensors and MCU using
serial messaging applications on our own cell phones and then testing. (John)

• Test to see if the mobile and web applications pull correct data from the database
(Isaac & Richa)

29



• Test if measured data can be displayed on the mobile application live (Isaac)

• Test if the mobile application can push data to the database (Isaac & Richa)

• Test if new users can be added to the database (Isaac & Richa)

5.4 Non-Functional Testing

• Test wear-ability and sensor connection distance to make sure the sensors can
connect within at least a 10 foot range but not further than 15 feet. (Entire
team)

• Test how long it takes to pull data and display it onto the front end (Entire
team)

• Test how fast users can login. The process should take no more than 30 seconds.
(Entire team)

• Test the responsiveness of the web application. Visual lagging should be mini-
mal. (Isaac, Richa, & Justin)

• Pen-testing for user data (Isaac & Justin)

5.5 Results

5.6 Hardware

Due to the COVID-19 pandemic causing the temporary closure of all labs on the
Iowa State University campus our first semester and limiting the availability during
our second semester, we had a limited window to utilize the labs and the equipment
provided on campus. During our available time on campus, we tested the Amped
pulse sensor and found promising results. The sensor sends an analog signal and we
were able to observe our own heartbeats on the oscilloscope at an operating voltage
of 5V and 3.3V DC. We then ended up testing the pulse sensor connected to the
STM32WB55 nucleo development kit running an arduino analog read program and
received the signal shown in Figure 9 which we deemed optimal for sending. The
green line represents the user’s pulse.

30



Figure 9: Heart Rate Signal

Furthermore, we conducted testing for battery life by measuring the input current
for the operating circuit and dividing by the current capacity of the CR2032 battery
cells(235 mAh). Once we had our circuit operating on battery power alone, we used a
multimeter to determine the input current to the circuit. We conducted five attempts
for averaging the input current to determine the battery life.

Test Attempt 1 2 3 4 5

Current (mA) 11.78 11.76 11.73 11.75 11.72
Table 8: Current Measurements for Pulse Sensor

We then performed the following calculation to determine how long the CR2032
could power the heart rate sensor circuit. We calculated the average current to power
the circuit (Ī), and then took the current capacity of the CR2032 and divided that
by the average current to get the battery life (tbat) in hours.

31



Ī =
11.78 + 11.76 + 11.73 + 11.75 + 11.72

5
= 11.75 mA

tbat =
235

11.75
= 20.00 hours

We conducted the same testing for the mobility sensor circuit. The way the mobil-
ity sensor behaves is that as the sensor material stretches and relaxes, the resistance
increases and decreases respectively. So the data we gather from the mobility sensor
will be the changes in resistance. Our mobility sensor resistance at normal length
without stretching was about 5 MΩ so the circuit consisted of our sensor in series
with a 10.7 MΩ resistance to conduct voltage dividing calculations that determine
the resistance changes. We first set up the STM32WB55 development kit with an
Arduino analog read program and connected the mobility sensor to the user’s finger,
and we were able to get the following signal out from finger movements:

Figure 10: Mobility Sensor Signal

Moreover, we then conducted the same current tests as the heart rate sensor to
determine how long a single CR2032 coin cell could power the circuit. We gathered
the following current readings from the multi-meter connected at the battery feeding
into the circuit during standard operation:

32



Test Attempt 1 2 3 4 5

Current (mA) 11.30 11.28 11.26 11.29 11.27
Table 9: Current Measurements for Mobility Sensor

These are the battery life calculations for determining the battery life for the
mobility sensor circuit. We calculated the average current (Ī) to power the circuit,
and then took the current capacity of the CR2032 and divided that by the average
current to get the battery life (tbat) in hours.

Ī =
11.30 + 11.28 + 11.26 + 11.29 + 11.27

5
= 11.28 mA

tbat =
235

11.28
= 20.83 hours

When we tested the pulse and mobility sensor and moved our hand simultaneously,
the signal experienced quite a bit of distortion (pulse sensor more than the mobil-
ity sensor). The signals will have to be filtered either using software or hardware
techniques.

5.7 Mobile and Web Applications

During the development of our mobile and web applications, we tested the functional
and non-functional requirements using Manual Testing. Due to time constraints, we
were unable to write automated tests.

Tables 10 and 11 show the results of functional and non-functional manual tests.

Requirement Test Plan Result

When selecting a patient
on the web app, the web
app should pull the cor-
rect patient data

Create a set of test pa-
tients and users within
the database. Sign in
with different users to
verify the results

The web app displays
the correct data for a
selected patient

When the MCU sends
sensor data to the mo-
bile app over bluetooth,
the mobile app should
correctly display the sen-
sor data

Create a list of sample
sensor data and use the
LightBlue app to send
the data to the mobile
app

Mobile app correctly
decodes the sensor data
and displays the correct
values on the UI

33



When the mobile app re-
ceives sensor data from
the MCU, the mobile
app should push the cor-
rect sensor data to the
database

Use the LightBlue app
to send sensor data to
the mobile app and
manually check Dy-
namoDB for each sensor
data

Each sensor data is cor-
rectly stored in the cor-
rect table in DynamoDB

When a user signs up
using the mobile app,
the correct user informa-
tion should be stored in
the database

Create multiple users
using the mobile app
and manually check Dy-
namoDB for each user

Each user information
is correctly stored in
the correct table in Dy-
namoDB

Table 10: Functional Tests

Requirement Test Plan Result

When selecting a pa-
tient on the web app,
it should not take more
than 30 seconds for it
to display the patient’s
data

Create different patients
within the database
with varying amounts
of sensor data. Manually
verify that the loading
times are within viable
ranges

Each user’s data is dis-
played in less than 5 sec-
onds

When users login on the
web app, it should not
take longer than 30 sec-
onds to login

Login into the web app
from multiple browsers
with different users

Logging into the web
app multiple times all
took less that 5 sec-
onds to access the main
screen

When users login on the
mobile app, it should
not take longer than 30
seconds to login

Login to the mobile
app multiple times us-
ing different accounts
and check how long it
takes to get to the home
screen

Logged in to the mobile
app multiple times us-
ing different accounts
and each login takes less
than 2 seconds

Table 11: Non-Functional Tests

34



5.8 Integration Testing

Due to COVID, we were unable to do integration tests between our MCU and our mo-
bile app. Instead, we have been using LightBlue to test our mobile app as mentioned
in the Functional table above.

6 Conclusion

We have designed the MCU/sensor IoT network with the STM32WB55 nucleo devel-
opment kits. The goal of this design is to interface the MCU with our sensors in an
IoT environment and have the MCU send data from the sensors to the cloud and a
mobile application where the user can then view the data and analytics from a mobile
or web application.

To accomplish these goals in the time frame we had, our development groups
worked concurrently. While the hardware team designed the MCU and sensor net-
work, the cloud team set up infrastructure with AWS and implemented stubs to ensure
communication between the cloud and the web application is running smoothly. De-
veloping in parallel reduced the time cost of this project and gave us more time for
testing.

Our end product allows medical professionals to analyze many vital functions of
multiple patients at once with ease using our sensor network design. The information
will be stored and interpreted using the cloud services we set up with our mobile and
web applications. This will make the lives of medical professionals much less stressful
when monitoring their patients. In addition, our product will give more patients the
freedom to leave a medical center or hospital while receiving care if they wish to do
so, and if they are given permission by their doctors, since our product is completely
portable.

35



References

[1] “John A. Stankovic,” University of Virginia School of Engineering and Applied Sci-
ence, 06-Dec-2019. [Online]. Available: https://engineering.virginia.edu/
faculty/john-stankovic. [Accessed: 25-Apr-2020].

[2] Sam Burnett - ETG, personal communication, Feb. 2020

[3] Teel, John, “How to Design Your Own Custom Microcontroller Board”, Predictable
Designs, 15-May-2018. [Online]. Available: https://predictabledesigns.com/
tutorial-how-to-design-your-own-custom-microcontroller-board-video-part1/.
[Accessed: 12-Feb-2020].

[4] Espressif Systems “ESP8266EX” ESP8266EX datasheet, Dec. 2015 [Revised Apr.
2020].

[5] Espressif Systems, “ESP32 Series,” ESP32 datasheet, Aug. 2016 [Revised Jan.
2020].

[6] ST Microelectronics, “Datasheet - STM32WB55xx," STM32WB55xx datasheet,
Oct. 2018 [Revised Jul. 2020].

[7] Maxim Integrated, “MAXREFDES117#: Heart-Rate and Pulse-Oximetry Moni-
tor,” System Board 6300 datasheet, Aug. 2016.

[8] Sparkfun Electronics, “Pulse Sensor,” Sparkfun Electronics, SEN-11574. [On-
line]. Available: https://www.sparkfun.com/products/11574. [Accessed: 5-
Feb-2020].

[9] Energizer Product Data Sheet “Energizer CR2032" Energizer CR2032 datasheet,
Jun. 2018 [Revised Apr. 2020].

[10] Mahmood, Hamza. “Advantages of Developing Modern Web Apps with React.js"
Medium, Medium, 7 Sept. 2018 [Accessed: 19-Apr-2020].

[11] “Overview" Overview - vue.js. [Online]. Available https://v1.vuejs.org/
guide/overview.html. [Accessed: 19-Apr-2020].

[12] “Meet Android Studio: Android Developers,” Android Developers. [Online].
Available: https://developer.android.com/studio/intro. [Accessed: 19-Apr-
2020].

[13] "Start Developing iOS Apps (Swift): Jump Right In", 08-Dec-2016.
[Online]. Available: https://developer.apple.com/library/archive/
referencelibrary/GettingStarted/DevelopiOSAppsSwift/. [Accessed:
23-Apr-2020].

36

https://engineering.virginia.edu/faculty/john-stankovic
https://engineering.virginia.edu/faculty/john-stankovic
https://predictabledesigns.com/tutorial-how-to-design-your-own-custom-microcontroller-board-video-part1/
https://predictabledesigns.com/tutorial-how-to-design-your-own-custom-microcontroller-board-video-part1/
https://www.sparkfun.com/products/11574
https://v1.vuejs.org/guide/overview.html
https://v1.vuejs.org/guide/overview.html
https://developer.android.com/studio/intro
https://developer.apple.com/library/archive/referencelibrary/GettingStarted/DevelopiOSAppsSwift/
https://developer.apple.com/library/archive/referencelibrary/GettingStarted/DevelopiOSAppsSwift/


[14] “Cloud Computing Services: Microsoft Azure,” Cloud Computing Services | Mi-
crosoft Azure. [Online]. Available: https://azure.microsoft.com/en-us/. [Ac-
cessed: 19-Apr-2020].

[15] “Cloud Computing Services: Amazon Web Services,” Amazon Web Services
(AWS) - Cloud Computing Services.[Online]. Available: https://aws.amazon.
com/. [Accessed: 19-Apr-2020].

[16] Amazon Web Services, Inc 2020. Amazon Dynamodb - Overview. [online] Avail-
able at: https://aws.amazon.com/dynamodb/ [Accessed 19 April 2020].

[17] Kumar, P., 2020. Amazon Dynamodb Tutorial - A Complete Guide |
Edureka Blog. [online] Edureka. Available at: https://www.edureka.co/blog/
amazon-dynamodb-tutorial#What-Is-DynamoDB? [Accessed 19 April 2020].

37

https://azure.microsoft.com/en-us/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/dynamodb/
https://www.edureka.co/blog/amazon-dynamodb-tutorial#What-Is-DynamoDB?
https://www.edureka.co/blog/amazon-dynamodb-tutorial#What-Is-DynamoDB?


Appendix A

Market Survey

John A. Stankovic - BP America Professor at the University of Virginia
Sarah A Radke - Nurse Practitioner Specialist in Whitefish Bay, WI
Jessica Terrell - Registered Nurse at Life Care Center of Jacksonville

MCU Programming References

The GNOME Project, GTK+ 3, (2020). Github Repository: https://github.com/
GNOME/gtk. [Accessed: 09-Apr-2020].

The GNOME Project, Glib, (2020). Github Repository: https://github.com/
GNOME/glib. [Accessed: 09-Apr-2020].

Boyini, Karthikeya, “Enum in C,” tutorialspoint.com, 05-Nov-2018. [Online]. Avail-
able: https://www.tutorialspoint.com/enum-in-c. [Accessed: 09-Apr-2020].

Carnegie Mellon University, “C Coding Standards,” Carnegie Mellon University, 27-
Apr-2004. [Online]. Available: https://users.ece.cmu.edu/~eno/coding/CCodingStandard.
html. [Accessed: 16-Apr-2020].

38

https://github.com/GNOME/gtk
https://github.com/GNOME/gtk
https://github.com/GNOME/glib
https://github.com/GNOME/glib
https://www.tutorialspoint.com/enum-in-c
https://users.ece.cmu.edu/~eno/coding/CCodingStandard.html
https://users.ece.cmu.edu/~eno/coding/CCodingStandard.html


Appendix B

Operations Manual

Sensors and MCU

1. Take your sensor circuit assembly and make sure the wiring connections are
secure, and apply the sensor.

(a) For the pulse sensor, make sure the side with the white heart figure is
facing towards the tip of your finger directly on top of your finger print
and secure it (lightly but enough to remain fastened to your finger) with
either tape or velcro.

(b) For the mobility sensor, make sure whichever joint the sensor is applied to
does not come in direct contact with your skin as the sensor has powdered
graphene and may cause irritation, and secure one end of the sensor above
the joint and one below. When your joint is straight, the sensor should
have a little slack to it.

2. Take your sensor assembly and place a CR2032 coin cell battery in the black
battery holder and close the holder.

3. On the battery holder there is a switch near the wiring, the switch position
closest to the wires is on, and further away from the wires is off. Flip the switch
in the on position and you will see a red LED turn on on the circuit.

4. Take your MCU phone attachment and place a CR2032 cell battery in the
battery holder and flip the switch to the same position and you will see a red
LED turn on on the MCU.

5. You will now see the devices BLE connections via the mobile app.

Mobile Application

A mobile phone with an Android operating system is required to use the application.
Since we were not able to do integration testing with our MCU, we recommend using
the LightBlue app to test the full functionality of the mobile app. Android Studio is
also required since we could not release a proper APK of the mobile app.

1. Clone our project repository to your Windows or Mac machine.
https://git.ece.iastate.edu/sd/sddec20-26

2. Open Android Studio and import the folder BodilySensorBLE.

3. Open the LightBlue app and create a virtual BLE device (e.g Blood Pressure).

39

https://git.ece.iastate.edu/sd/sddec20-26


(a) Click on the new device that you just created.

(b) Scroll down until you see the device.

i. Click the blue icon.
ii. Copy the 4-digit Service UUID.

(c) Click Option and add a Characteristic.

i. Select the option below Device Information.

(d) Select the characteristic that you just created.

(e) Copy the characteristic UUID.

(f) Under Property, make sure Indicate is selected.

4. In Android Studio, navigate to DetailActivity.java.

(a) There, you’ll find a variable named SERVICE_UUID. Type in the follow-
ing UUID and replace with the 4-digit Service UUID that you copied.

i. 0000-0000-1000-8000-00805f9b34fb

(b) You’ll also find a variable named READ_UUID. Type in the characteristic
UUID that you copied.

(c) Connect your Android device to your machine and run the app.

5. On the mobile app, create and account and login.

(a) On the home screen, you can scan for nearby BLE devices. Click Scan.

(b) From the list, find the virtual BLE device that you created and click Con-
nect.

(c) Click on the connected device.

6. Using our custom data frame, create some sample data and send it using the
LightBlue app.

(a) Here is a 60BPM sample data
030200404e00000000000000

Web Application

The web application uses React-Bootstrap with different dependencies including, but
not limited to, firebase, react-router-dom, aws-sdk, and react . You will need to have
Node.js and NPM, which stands for node package manager, installed.To edit the web
app you will need and IDE of your choice and access to the git repository. Once you
have gathered all those resources you will need to follow the steps given below.

40



1. Navigate to the directory where you clone the repository from your terminal
and run ‘npm install’ to install the project’s dependencies.

2. After all the dependencies have finished installing you just need to run “npm
start” from your terminal to launch the application. Once the server is running
locally it will automatically open a new browser window or a new tab within
an already running browser.

3. Navigate to the new tab. From there you will either need to sign-in, assuming
you have already signed-up, or sign-up for the first time.

4. Once a provider is signed-in there would be a list of their patients on the Home
screen. They would be able to navigate by clicking on the patient’s name to a
detailed page containing the patients sensor details.

Setup Manual

Sensors and MCU

1. The sensor assembly has three components:

(a) The battery holder

(b) The STM32WB55 board

(c) The sensor

2. For setting up the pulse sensor:

(a) Connect the red wire to the 5 Volt slot on the STM32WB55 board.

(b) Connect the Black wire to the GND slot on the STM32WB55 board.

(c) Connect the purple wire to the A0 slot on the STM32WB55 board.

3. For setting up the mobility sensor:

(a) Connect one end of the mobility sensor to 5V slot on the STM32WB55
board.

(b) Connect the other end of the mobility sensor to the voltage divider circuit.

(c) Connect the free end of the voltage divider circuit to GND.

(d) Where the sensor connects to the voltage divider circuit, take the free wire
and connect that to the A0 slot on the STM32WB55 board.

4. The MCU assembly has two components:

(a) The battery holder

(b) The STM32WB55 board

41



5. Take the battery holder and connect the black wire to the GND slot on the
STM32WB55 board and the red wire to the 3V slot.

42



Appendix C

Other Considerations

The biggest thing we learned from working on this project is that communication
within a team is key. At the beginning of this project we were able to meet in
person at different locations around campus. This changed drastically as with the
start of the COVID-19 pandemic in mid March. Since then we have learned to work
as a team from a distance. We have experienced the difficulty of sharing hardware
between members when in isolation. We had members exposed to the virus and were
obliged to remain in quarantine to prevent the spread which greatly hindered progress
during the testing phases that required meetings face-to-face.Furthermore, we learned
many new technologies we have not worked with before, so it was quite a learning
experience.

43



Appendix D

Below is a URL for our project repository.
https://git.ece.iastate.edu/sd/sddec20-26

44

https://git.ece.iastate.edu/sd/sddec20-26

	List of Figures
	List of Tables
	Introduction
	Acknowledgement
	Project and Problem Statement
	Operational Environment
	Requirements
	Engineering Constraints
	Functional Requirements

	Intended Users and Uses
	Assumptions and Limitations
	Expected End Product and Deliverables

	Specifications and Analysis
	Proposed Approach
	Design Analysis
	Development Process
	Conceptual Sketch

	Statement of Work
	Previous Work and Literature
	Technology Considerations
	Hardware/Embedded
	Connection board options
	Connection Board Options
	Pulse Sensor options
	Battery Options
	User Interface
	Cloud Services
	Data Analysis/Databases

	Task Decomposition
	Possible Risks and Risk Management
	Project Proposed Milestones and Evaluation Criteria
	Project Tracking Procedures
	Expected Results and Validation

	Project Timeline, Estimated Resources, and Challenges
	Project Timeline
	Feasibility Assessment
	Personnel Effort Requirements
	Financial Requirements and Other Resource Requirement

	Testing and Implementation
	Interface Specifications
	Hardware and software
	Functional Testing
	Non-Functional Testing
	Results
	Hardware
	Mobile and Web Applications
	Integration Testing

	Conclusion
	References
	Appendix A
	Appendix B
	Appendix C
	Appendix D

